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ABSTRACT. Recent advances in electronic structure theory and the availability 
of high speed vector processors have substantially increased the accuracy of ab 
initio potential energy surfaces. The recently developed atomic natural orbital 
approach for basis set contraction has reduced both the basis set incompleteness and 
superposition errors in molecular calculations. Furthermore, full CI calculations can 
often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts 
for the valence correlation energy. These computational advances also provide a 
vehicle for systematically improving the calculations and for estimating the residual 
error in the calculations. Calculations on selected diatomic and triatomic systems 
will be used to illustrate the accuracy that currently can be achieved for molecular 
systems. In particular, the F+H2 +HF+H potential energy hypersurface is used to 
illustrate the impact of these computational advances on the calculation of potential 
energy surfaces. 

I. INTRODUCTION 
The theoretical determination of purely ab initio reaction rates is becoming 

an important area of computational chemistry research. At NASA Ames Research 
Center there is considerable interest in determining rates for chemical reactions 
occuring at high temperatures and in exotic environments. These conditions will 
be encountered in the re-entry bow shock wave of aero-assisted orbital transfer 
vehicles (AOTV) [l] or inside the combustion chamber of the hydrogen-fuelled hy- 
personic craft National Aero-space Plane (NASP) [2]. It is important to have such 
rate data at the design stage in order to estimate what heating effects will be en- 
countered during re-entry and the combustion efficiency that can be expected under 
hypersonic conditions. However, it is clearly very difficult (sometimes it is not even 
possible) to study such environments in the laboratory, and as a result theoretical 
determinations can provide data that is simply not obtainable by other means. 

At present, there is a variety of methodologies [3] for carrying out calculations 
of reaction cross sections, rate constants and product state distributions. In general, 
these dynamical methods, either classical or quantum mechanical, are based on 
knowledge of the potential energy surface (PES), and as a result, the accuracy of the 
kinetic predictions ultimately depends on the PES itself. Futher, those dynamical 



methods which rely on a global representation of the PES are conditioned not only 
by the accuracy of the computed energy points, but also by the techniques used to 
represents these points with a functional form. 

In the present work we shall discuss recent advances in quantum chemical 
methodology that have improved the reliability of ab initio electronic structure cal- 
culations. These include full. configuration interaction (FCI) calculations [4-131, 
which have given new insight into the errors associated with the common approx- 
imations for treating electron correlation, and atomic natural orbital (ANO) basis 
sets [14-151, which have reduced the error in the one-particle basis sets by allowing 
large primitive sets to be contracted with little loss in accuracy. In cases for which 
it would be unreasonably expensive to apply these techniques over the whole PES, 
we demonstrate that it should be possible to study the global surface by adjusting 
a PES based on a lower (and less expensive) level of theory using very accurate 
calculations performed at the critical points of the surface. It is hoped that surfaces 
generated in this manner will be sufficiently accurate that comparison with experi- 
ment will provide insight into the limitations of the dynamical studies rather than 
reflect the limitations of the PES itself. This, of course, presupposes that adequate 
methods for fitting the computed energy points are available [16]; this aspect of the 
problem is discussed briefly below, but is generally beyond the scope of the present 
work. 

In Section I1 we give an overview of current theoretical methods. It is not our 
aim to provide detailed descriptions of methods and algorithms, but rather to discuss 
the techniques used in broad terms for reference in later discussions. In Sections I11 
and IV we discuss FCI calibration calculations and A N 0  basis sets, respectively. 
In Section V, the accuracy of current methods is illustrated by comparing with 
selected diatomic and triatomic systems where accurate experimental spectroscopic 
constants are available for comparison. We consider the FfHz +FH+H reaction 
in Section VI, and Section VI1 contains our conclusions. 

11. QUANTUM CHEMICAL METHODOLOGY 
The determination of a PES to be used in computing reaction rates involves 

solving the non-relativistic time-independent Schrodinger equation for fixed nuclear 
positions in the Born-Oppenheimer approximation. A review of the general method- 
ology of computational chemistry is given in Ref. 17. The first step in solving the 
Schrodinger equation is to select a one-particle basis set. This is generally a set of 
Gaussian-type orbitals (GTOs), grouped into fixed linear combinations called con- 
tracted functions. While this type of one-particle basis is universally referred to as 
an atomic orbital basis, it must be borne in mind that the description it provides 
of the individual atoms is often far from perfect. This can lead to problems in de- 
scribing atom-atom interactions or binding, since deficiencies in the “atomic basis” 
for one atom can be compensated for by using part of the basis on another center, 
resulting in a completely spurious energy lowering referred to as superposition er- 
ror (SE) [18]. The effects of superposition error on a computed PES are discussed 
in more detail below. 

Once the one-particle basis has been chosen, a method for solving for the elec- 
tronic motion must be selected. In principle, the correlation, or n-particle, problem 
can be solved exactly in a given one-particle basis set by a full configuration inter- 
action (FCI) calculation, which includes all arrangements of the n electrons in the 
given one-particle basis, consistent with Fermi statistics and the desired spin and 
spatial symmetry. However, the length of the FCI expansion increases factorially 

. 



with the number of orbitals and electrons: this generally necessitates the use of 
methods in which the n-particle expansion is truncated. The expansion is most 
commonly truncated by restricting the excitation level to single and double exci- 
tations (SDCI from either a self-consistent field (SCF) or a multiconfigurational 
SCF (MCSCF 1 reference wave function. Such an SCF or MCSCF description is the 
best zeroth-order treatment of the system, and then it is single and double excita- 
tions relative to this treatment that formally enter in the next order of perturbation 
theory. Although much chemistry is well described using an SCF wave function as 
the reference, an MCSCF zeroth-order wave function is generally required for com- 
puting a PES where chemical bonds are formed and broken in order to account for 
near-degeneracy and multireference effects. 

While the SCF description of a system is uniquely defined, the use of an MC- 
SCF wave function introduces an additional degree of freedom, namely, the choice of 
configurations. Several schemes for choosing configurations have been devised, most 
of which are based on restricting the multiconfigurational treatment to the bonds 
or lone-pairs of interest, such as the generalized valence bond (GVB) model and its 
variants [19]. One simple and widely used scheme is the complete-active-space-SCF 
(CASSCF) approach [20], in which only a choice of active orbitals.and electrons 
is required: the CASSCF configuration space is then a full CI in this active space. 
Choosing an active orbital space is usually simpler (and much less error-prone) than 
constructing a configuration list explicitly. Once the MCSCF configuration space 
has been defined, it is then necessary to decide on the configuration list for the 
CI expansion. Several possible routes to such a list exist and it is useful here to 
distinguish between them. 

For the case of a closed-shell single-reference single and double excitation CI 
(SDCI) calculation, the configuration list is defined unambiguously by considering 
all configuration state functions (CSFs) in which no more than two electrons oc- 
cupy virtual orbitals - this is exactly equivalent to including all singly- and doubly- 
excited CSFs relative to the reference configuration. One approach to multireference 
SDCI (MRCI) is simply to include all CSFs with no more than two electrons in the 
virtual orbitals, and if all electrons correlated in the CI calculation are active in the 
CASSCF calculation this so-called second-order CI (SOCI) corresponds again to all 
single and double excitations out of the CASSCF configurations as references. How- 
ever, if there are some electrons correlated in the CI but not active in the CASSCF, 
these two prescriptions do not lead to the same CI spaces. Specifically, if we take 
the molecule N2 as an example, treated with the 2p-derived orbitals and electrons 
active in the CASSCF, but with all ten valence electrons correlated in the CI, the 
SOCI wave function would contain some CSFs with, say, two electrons in virtual 
orbitals and eight electrons in the active orbitals: these are quadruple excitations 
from the CASSCF configuration space and would not be included in a calculation 
defined as “all single and double excitations from the CASSCF configurations”. 
While the distinction between these two approaches can be important in terms of 
computational expense (where SOCI can be considerably more expensive), it is sel- 
dom of quantitative significance in practice, and as described above no problem 
arises when only the CASSCF active electrons are correlated in a subsequent CI. 

The construction of the CI configuration list frequently involves problems in 
addition to those described above. For example, it will often be the case that a 
CASSCF configuration space of several thousand CSFs, in conjunction with a large 
one-particle basis, will generate several million or several tens of millions of CSFs in 
the SOCI (or CASSCF reference MRCI), making such a CI calculation impossible. 
The most common approach is then to truncate the list of reference configurations, 
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usually by selecting those configurations with a coefficient in the CASSCF calcula- 
tion above some threshold. An additional, common, simplification is to eliminate 
for the CI configuration list any CSFs that have vanishing Hamiltonian matrix ele- 
ments with all the reference CSFs [21]. This restriction to the so-called “first-order 
interacting space” can be justified formally by perturbation theory and in practice 
it seems to result in negligible effects on computed energies and properties. These 
various approaches to the construction of MRCI configuration lists are discussed in 
more detail, with numerical examples, below. 

Even with truncation of the list of reference CSFs, MRCI calculations can 
be very costly. Several alternative schemes have therefore been suggested. One 
approach is to combine together (“contract”) CSFs in the MRCI. The “internally 
contracted” CI method [22], in which the reference CSFs are combined with fixed 
coefficients to give a single effective reference function has proven to be quite reliable, 
and with recent improvements [23] is expected to be more commonly used. The 
“externally contracted” CI (CCI method of Siegbahn [24], in which the singly- 

theory, has been extensively used and in general is in good agreement with the 
MRCI results. As we discuss below, a CCI surface, calibrated by very accurate 
MRCI calculations, may be one of the most cost-effective methods of computing a 
PES. 

Finally, it should be pointed out that the perturbation-theoretic methods [25] 
(MP2, etc.), used with such success for molecules near their equilibrium geometries, 
are much less satisfactory when used to compute a PES. Obviously, where several 
reference configurations are required these single-reference treatments cannot be 
expected to perform well, and it does not seem possible to overcome such problems 
by the use of unrestricted Hartree-Fock (UHF) methods to define a single refer- 
ence CSF: the UHF PES itself will often display discontinuities from spontaneous 
symmetry breaking, and this inevitably compromises the subsequent perturbation 
theory treatment. Recent efforts [26] to devise projected UHF-based schemes may 
overcome these problems, but this is simply another approach to generating a mul- 
tireference wave function. 

Correlation treatments will, of course, approach the FCI result as higher levels 
of excitations are included. Although explicitly including such higher-excited con- 
figurations in the wave function usually leads to a prohibitively long CI expansion, 
methods of estimating the effects of some of these higher excitations have been de- 
veloped. For single-configuration- based wave functions these include the Davidson 
correction 271, the coupled-pair functional (CPF) method [28] (or its modified form, 
MCPF [29 I ), and coupled cluster (CC) methods [30]. For the multireference case 
an extension of the Davidson correction [31] is commonly used. Recent additions 
to this list of so-called “size-consistent” methods include the quadratic CI (QCI) 
method 132 , which is an approximate (single-reference) CC treatment and the aver- 
aged CPF 2 ACPF) method [33], which is a simple multireference extension of CPF. 
Finally, the scaled external correlation (SEC) method [34] has been proposed to 
account for the remaining errors in both the n- and one-particle expansions. 

Estimates of the higher excitations or other approximations can be useful 
in computing more accurate dissociation energies and barrier heights, especially 
in systems where more than about eight electrons are correlated. However, these 
approximate techniques are not bounded variationally like the MRCI, and if the 
quality of the approximation varies across the PES it may introduce significant 
“noise” into the computed energies [35]. This should be borne in mind when com- 
puted energies are used in fitting a PES, since obtaining a satisfactory fit may 

and doubly-excited CSFs are com b ined using coefficients derived from perturbation 
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require a high degree of precision in the computed energies. It should be noted in 
this context that techniques [36] in which selection is performed on all the CSFs 
in the CI expansion, rather than just the reference CSFs (especially those methods 
in which perturbation theory is used to estimate the contribution of the neglected 
CSFs) may not always be capable of achieving the necessary precision. 

From the above discussion it is clear that what is essentially a double basis set 
expansion technique for obtaining a wave function may suffer from two interrelated 
sources of error: the incompleteness of the one- and n-particle basis sets. FCI 
calculations, which solve the n-particle problem exactly for a given one-particle basis 
set, are therefore extremely useful in that they separate the contributions from these 
two sources of error. By designing a truncated CI treatment that reproduces the FCI 
results in a moderate sized basis set (thereby eliminating any error in the n-particle 
treatment), accurate results can be obtained by performing the same CI treatment 
in a very large basis (which minimizes the one-particle basis errors). This general 
approach has proved very effective in several cases in which accurate experimental 
data are available for comparison. Atomic natural orbital (ANO) basis sets are 
particularly useful for studying the saturation of the one-particle basis, as their 
definition provides a systematic procedure for improving basis set completeness. 
We next consider in more detail how the FCI method and the A N 0  basis sets have 
led to more accurate calculations. 

111. FCI BENCHMARK CALCULATIONS 
While this work is directed towards evaluating how recent computational ad- 

vances have affected the reliability of a computed PES, it is not possible to accom- 
plish this goal by a direct comparison with experimental rate constants. Instead, 
as the differential correlation effects on a PES are similar to those between differ- 
ent electronic states or between equilibrium and dissociated geometries for a given 
system, we will use accurate experimental data for diatomic and triatomic systems 
to evaluate our methods. In addition to comparing with experiment, we also use 
the FCI results as an absolute standard of comparison for a given one-particle basis 
set. 

Early comparisons of this sort were based on work by Handy and co- 
workers [37], who developed an efficient direct FCI approach in terms of deter- 
minants. Using a double-zeta (DZ) basis set, they considered stretching the 0 - H  
bond lengths in the H20 molecule to 1.5 and 2.0 times their equilibrium values. The 
FCI results showed that even the restricted Hartree-Fock (RHF) based fourth-order 
many-body perturbation theory (MBPT) approach [38], which includes the effect 
of single, double, triple and quadruple excitations, did not accurately describe the 
stretching of the bond; the error increased from 0.6 kcal/mole at re  to 10.3 kcal/mole 
with the bonds stretched to twice their equilibrium values. Although the MBPT 
method is rigorously size-consistent and contains the effects of higher than dou- 
ble excitations, it does not describe the bond breaking process well because the 
RHF reference becomes a poor zeroth-order description of the system as the bond 
is stretched. Size-consistent methods that include double excitations iteratively 
- infinite-order methods such as the coupled cluster (CC) approach- do better. 
However, only methods that account for the multireference character in the wave 
function as the bonds are broken, such as the CASSCF/MRCI method, provide an 
accurate description at all bond lengths, or, correspondingly, at all geometries on 
the PES [39]. 

The ability to perform FCI calculations was significantly advanced by Sieg- 



Table I. 'A1 -3B1 splitting in CH2 (kcal/mole) using a DZP basis set and correlating 
six electrons. 

Method Splitting Error 

SCF" 
SCF"/SDCI 
SCF/SDCI+Q 
CPF 

Full CI 

26.14 
14.63 
12.35 
12.42 
12.20 
12.03 
11.97 
11.79 
11.97 

14.17 
2.66 
0.38 
0.45 
0.23 
0.06 
0.00 

-0.18 

a The SCF occupations are la:2a:3a:lbi and l a ~ 2 a ~ l b ~ 3 a ~ l b ~ .  ' SCF treatment for 3B1 state, two-configuration MCSCF treatment for 'A1 state 
(SCF configuration and 3 4  + lb: excitation). 
" Active space comprises the C 2s 2 p  and H Is orbitals . 

bahn [40], who formulated the FCI as a series of matrix multiplications to utilize the 
vector capabilities of current su ercomputers, and by Knowles and Handy [41] who 
effectively eliminated the input Pout put requirements by formulating the problem in 
terms of determinants. Using this new FCI approach, a series of benchmark calcu- 
lations has been performed [4-131, expanding the scope of the earlier studies [37] to 
include several additional aspects of the effects of electron correlation. 

In Table I we compare the FCI 'A1 - 3B1 separation in CH2 with various 
truncated CI results [4]. Since the 'AI  and 3B1 states are derived nominally from 
the 3 P  and 5S states of carbon, respectively, the different bonding mechanisms re- 
sult in a substantial correlation contribution to the separation: the SCF separation 
is over 14 kcal/mole too large. The error of 2.7 kcal/mole at the SDCI level is 
still relatively large; an error of this magnitude in a barrier height, for example, 
could result in significant errors in a computed reaction rate. The inclusion of the 
contribution of unlinked higher excitations through either the Davidson correction 
(+Q) or the CPF method reduces the error substantially. The origin of the error in 
the SCF/SDCI treatment is the second important configuration, arising from the 
double excitation 3 4  + lb:, in the 'A1 state. If the orbitals for the 'A1 state 
are optimized in a two-configuration SCF (TCSCF) calculation, and correlation is 
included by performing an MRCI calculation based on both these reference config- 
urations, the error is about half that of the SDCI+Q or CPF treatments. The error 
is reduced to only 0.06 kcal/mole if the multireference analog of the +Q correction 
is added. After the 3 4  + lb: excitation, the next most important correlation ef- 
fect is that associated with the C-H bonds. If this correlation effect is accounted 
for in both the CASSCF zeroth-order reference and a subsequent SOCI calculation, 
essentially perfect agreement between the SOCI and FCI is observed. That is, a 
well-defined CASSCF/MRCI treatment accounts for all of the differential correla- 
tion effects. It is interesting to note that adding the multireference +Q correction 
to the SOCI energy results in an overcounting of the effect of higher excitations and 
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Table 11. N2 'E: spectroscopic constants 

Method 

SDCI 
SDCI+Q 
SDTCI " 
SDTQCI 
SDQCI 
CPF 
MCPF 
SOCI 
SOCI+Q 
Full CI 

re (UO) 
2.102 
2.115 
2.107 
2.121 
2.116 
2.112 
2.114 
2.123 
2.123 
2.123 

DZP basis 
6 electrons correlated 

we (cm-l) 

2436 
2373 
241 1 
2343 
2361 
2382 
2370 
2334 
2333 
2333 

De (eV) 
8.298 
8.613 
8.462 
8.732 
8.586 
8.526 
8.556 
8.743 
8.766 
8.750 

the separation becomes smaller than the FCI result. 
We next consider the spectroscopic constants [5] for the ground state of N2, 

which are summarized in Table 11. The SDCI calculation yields a bond length that 
is in good agreement with the FCI, but the error in De is 0.45 eV, even when 
size-consistency problems are minimized by using the 'E: state of N2 to represent 
two ground state N(4S)  atoms at infinite separation. Although the addition of 
quadruple excitations, either variationally (SDQCI) or by the +Q, CPF or MCPF 
approximations, further reduces the error in De, it remains too large for chemical 
accuracy (1 kcal/mole). If both triple and quadruple excitations are included, the 
spectroscopic constants are all in good agreement with the FCI. However, this level 
of treatment is prohibitively expensive in a large one-particle basis set, and even 
this wave function does not dissociate correctly to ground state atoms, as this 
requires six-fold excitations relative the SCF configuration at re .  The spectroscopic 
constants computed from an SOCI treatment based on a CASSCF wave function 
are in excellent agreement with the FCI. Furthermore, this treatment agrees with 
the FCI for all values. The addition of the +Q correction does not affect re or we, 
but it makes De too large compared with the FCI. 

Dipole-induced dipole or dipole-quadrupole interactions can give rise to 
weakly bound complexes of considerable importance in dynamical studies. It is 
therefore important that properties such as the polarizability can be accurately de- 
termined. A FCI study [6] of the polarizability of F- is summarized in Table 111. 
As in the previous examples, the SDCI treatment is not sufficiently accurate for 
very high quality calculations. The inclusion of an estimate of higher excitations 
improves the results; in this case CPF is superior to the +Q correction. In the 
multireference case two different approaches were used. In the first, the CASSCF 
included the 2p electrons and 2 p  and 3p orbitals in the active space, and all CASSCF 
CSFs were used as references for the CI, in which the 2s and 2p electrons were cor- 
related. Results obtained in this way are denoted MRCI in Table 111. A more 
elaborate CASSCF calculation, with the 2s and 2p electrons and the 2.5, 3s) 2p and 
3p orbitals in the active space, was also performed: the use of all these CASSCF 
CSFs as references gives an SOCI expansion and the results are denoted SOCI in 



Table 111. Polarizability of F- (a.u.) 

Method 

SDCI 

CPF 
SDCI+Q 

MRCI 
MRCI+Q 
SOCI 
SOCI+Q 
Full CI 

DZP + diffuse spd basis 
8 electrons correlated, a = d2E/dF2 

a 

13.965 
15.540 
16.050 
16.134 
16.346 
16.034 
16.303 
16.295 

Table 111. The MRCI and SOCI results are not in as good agreement with the FCI 
as the MRCI+Q or SOCI+Q results. The +Q correction does not overshoot as it 
did for N2 and CH2, in part because of the larger number of electrons correlated 
here. As noted above, when only six electrons are correlated, the MRCI accounts for 
such a high percentage of the correlation that the +Q correction overestimates the 
missing correlation. For more than six electrons, or for cases where the zeroth-order 
wave function used is less satisfactory than was the CASSCF for N2 and CH2, the 
+Q correction may become a better approximation. This is especially true where 
quantities involving large differential correlation effects, such as electron affinities, 
are sought [7]. Thus the +Q correction substantially improves the agreement with 
FCI for the electron affinity of fluorine [8],  even if large CASSCF active spaces and 
SOCI wave functions are employed. 

It is almost always the case that only the valence electrons are correlated in 
quantum chemical studies, although for very accurate results core-valence and core- 
core correlation effects may be required. A recent detailed study [9] has shown that 
it is very difficult to find a truncated CI treatment that satisfactorily reproduces 
FCI correlation energies including core correlation. If the main interest is in a dif- 
ferential effect of core correlation (such as the contribution to an energy separation 
or to a bond length) it may be possible to neglect the core-core correlation, which 
is often almost independent of geometry, and to compute only the core-valence cor- 
relation. This is most easily accomplished by eliminating from the CI expansion 
any CSFs corresponding to a double (or higher) excitation from the core orbitals. 
Such an approach seems to recover most of the core correlation contribution to 
spectroscopic constants. While the effects of core correlation are often small (a 
few tenths kcal/mole in the CH:! singlet/triplet separation, for example [9]), they 
may be important if accuracy better than about one kcal/mole is desired. In view 
of the expense incurred by including the core electrons in the CI treatment, and 
the additional problem that correlating more electrons increases the need for size 
consistency, it may be preferable to handle core-valence correlation effects by an 
effective potential approach like that developed by Meyer and co-workers [42]. 

Most scattering formalisms are developed in a diabatic representation, whereas 
a theoretical PES is computed in the adiabatic representation. Hence when curve 
crossings (or more complicated phenomena for polyatomic systems) occur both PO- 
tentials must be accurately represented in the crossing region, and nonadiabatic COU- 



pling matrix elements (NACMEs) will be required to define the unitary transforma- 
tion between the diabatic and adiabatic representations. Until recently, NACMEs 
were computed either using finite difference methods [43] or via approximations 
to avoid computing matrix elements between non-orthogonal wave functions [44]. 
However, Lengsfield, Saxe, and Yarkony [45] have recently developed an efficient 
method of evaluating NACMEs based on state-averaged MCSCF wave functions 
and analytic derivative methods. This should provide NACMEs of the same overall 
accuracy as that obtained for the adiabatic potentials. 

In curve crossings where the molecular orbitals for the two states are similar, 
such as interactions between valence states derived from different asymptotic lim- 
its, the CASSCF/MRCI approach would be expected to describe both potentials 
accurately irrespective of which state is used for the orbital optimization. However, 
when the character of the two states is very different, such as valence/Rydberg mix- 
ing [lo] or interaction between states derived from ionic and covalent limits [Ill, 
it is more difficult to achieve equivalent accuracy for the lowest adiabatic state on 
either side of the crossing point. This is commonly the case for charge-exchange re- 
actions, such as N++N2 - t N + N t ,  or chemi-ionization processes such as M + X 3 
M+ + X-, where the optimal molecular orbitals for the ionic and neutral solutions 
differ greatly. To gain additional insight into the computational requirements for 
describing the potentials in the region of curve crossings, we have studied [ll] the 
Li + F -+ Li++F- chemi-ionization process using the FCI approach. In LiF the 
lowest adiabatic state at short T values, namely the ionic XIC+ state, dissociates 
adiabatically to neutral ground state atoms. There is an avoided crossing at the 
point where the energy difference between the F electron affinity (EA) and the Li 
ionization potential exactly balances the 1/r electrostatic stabilization. Since the 
CASSCF description of F- is poor [8], the CASSCF estimate for the bond distance 
at the crossing point is unrealistically small. When orbitals from the ground-state 
CASSCF wave function are used to construct an MRCI wave function, this problem 
with the CASSCF description of the crossing point will compromise the accuracy 
of the MRCI description. This problem is not easily resolved by expanding the 
CASSCF active space, as very large active spaces are required to obtain a good 
description of atomic electron affinities. However, by performing instead a state- 
averaged CASSCF calculation, in which the orbitals are optimized for the average 
of the two lowest 'E+ states in LiF (the ionic and neutraI states), the orbital bias 
is eliminated and the MRCI treatment is in excellent agreement with the FCI. It 
is also important to note that this averaging does not significantly degrade the de- 
scription of the system near r, .  Thus state averaging appears to be an excellent 
method of achieving equal accuracy for two potential curves in a curve crossing 
region, and should also perform well for polyatomic systems. The utility of state 
averaging as a means of obtaining a good compromise orthogonal set of molecular 
orbitals for use in an MRCI wave function has also been found to be an excellent 
route to computing accurate electronic transition moments [12]. It is thus seen that 
there is much in common between methods that account accurately for differential 
correlation effects on a PES and those that yield accurate spectroscopic constants 
and molecular properties. 

A number of important conclusions can be drawn from these FCI bench- 
mark studies. First, even in a complete one-particle basis set, it is unlikely that 
an accurate PES can be generated using single-reference-based treatments such as 
SCF/SDCI. If all regions of a PES are well described by an SCF reference, SDCI+Q, 
CPF or CC methods should yield acceptable results, but this is a very uncommon 



situation in practice. Second, the CASSCF/MRCI method is capable not only of 
achieving high accuracy for an individual PES, but also of achieving equivalent ac- 
curacy for several PES derived from different asymptotic limits. Some questions 
remain as to the utility of including the multireference +Q correction: it probably 
should not be included when six or fewer electrons are correlated and the CASSCF 
active space contains all the impdrtant correlation effects, since a large percentage 
of the higher excitations are already accounted for in the MRCI and any correction 
then overshoots the FCI. For more than six electrons correlated, the true answer 
may be closer to the +Q corrected value, although even here for systems that are 
very well described at the CASSCF level the +Q correction to MRCI may result 
in some overshoot. For relatively large numbers of electrons correlated say, more 
than 12) or cases where there are large differential correlation effects, SUC 6 as those 
encountered in the computation of electron affinities, the +Q may underestimate 
the importance of higher excitations. Thus, it is generally most important to in- 
clude the +& correction when there is a significant change in the character of the 
system that is not well described at the CASSCF level. Such a situation arises, for 
example, for the reaction F+H2 +HF+H, where F in the HF product has some F- 
character. This is discussed further below when this reaction is considered in detail. 

IV. A N 0  BASIS SETS 
In the previous section we showed that the CASSCF/MRCI approach yields 

results in excellent agreement with FCI, that is, near the n-particle limit. We may 
therefore expect excellent agreement with experiment when the CASSCF/MRCI 
approach is used in conjunction with extended one-particle basis sets. It has be- 
come clear [46] that, until recently, the basis set requirements for achieving the 
one-particle limit at the correlated level were commonly underestimated, both in 
the number of functions required to saturate the space for each angular momentum 
quantum number and in the maximum angular momentum required. For the seg- 
mented basis sets that are widely used in quantum chemistry, improving the basis 
set normally involves replacing a smaller primitive basis set with a larger one. It 
is then seldom possible to guarantee that the smaller basis spans a subspace of the 
larger set, and it is thus difficult to establish how results obtained with different 
basis sets relate to convergence of the one-particle space. Ideally, the possibility of 
differences in primitive basis sets would be eliminated by using a single (nearly com- 
plete) primitive set, contracted in different ways such that the smaller contracted 
sets are subsets of the larger one. Such an approach requires a general contrac- 
tion scheme, such as the one proposed by Raffenetti [47] for contracting valence 
orbitals at the SCF level. However, a contraction based on atomic SCF orbitals 
is not necessarily suitable for handling the correlation problem, and provides no 
means to contract polarization functions, large primitive sets of which are required 
for accurate results. Calculations on molecular systems have shown [48] that nat- 
ural orbitals (NO) provide an efficient method of truncating the orbital space in 
correlated treatments. Almlof and Taylor [14] have proposed a NO procedure for 
contracting atomic basis sets suitable for use 'in correlated molecular calculations: 
this atomic natural orbitals (ANO) approach is an efficient method for contracting 
large primitive valence and polarization basis sets. It has the advantage that the 
natural orbital occupation numbers provide a criterion for systematically expanding 
the basis set. 

These ideas are illustrated for N atom and N:! in Table IV. As the contraction 
of the (13s 8 p  6d) primitive set is expanded from [4s 3p 24 to [5s 4p 3d] to [6s 5 p  4d], 



Table IV. N/N2 extended basis total energies ( E H )  and “dissociation energies” (ev). 

N atom 
Basis set 

5s 4p 3d 2f] (29)’ 
5s 4p 3d 2f 191 

N2 moleculeb 
Basis set 

13s 8p 6d 4 f) 
p s  4p 3d 2f] 
4s 3p 2d 1 f 
5s 4p 3d 2f ](2g)’ 
5s 4p 3d 2f lg] 

ESCF -k 54. 
. -0.400790 

-0.400779 
-0.400769 
-0.400725 

-0.400790 
-0.400769 
-0.400725 
-0.40076 9 
-0.400769 

ESCF + 108. 
-0.986307 
-0.985913 
-0.984833 
-0.983483 

-0.989318 
-0.988031 
-0.986230 
-0.988458 
-0.988322 

Gorr 

-0.338118 
-0.337304 
-0.335395 
-0.329330 

-0.365735 
-0.362548 
-0.353283 
-0.370808 
-0.369270 

Ecorr 

-0.1 1 1493 
-0.11 1321 
-0.110925 
-0.109066 
-0.12 1385 
-0.120499 
-0.117584 
-0.122472 
-0.122 138 

De(SCF) De(SDC1) 
5.03 8.16 
5.02 8.14 
4.99 8.08 
4.95 7.98 

5.11 8.45 
5.07 8.38 
5.03 8.24 

5.09 8.51 
5.08 8.48 

’ 2 uncontracted g sets. 
r(N-N) = 2.1 ao, 10 electrons correlated. 

the correlation energy systematically converges to that of the uncontracted results. 
The same is true for the (4f) and (29) polarization sets. When these A N 0  sets itre 
applied to N2, the same systematic convergence of De is observed. In addition, by 
contracting the basis set for the atom, the superposition errors at the correlated 
level are minimized. 

In order to treat atomic states with different character equally, e.g. F and 
F-, the ANOs can be averaged to yield a compromise set. This is analogous to the 
state averaging used to define compromise orbitals suitable for describing molecular 
states of different character discussed above. A [5s 4p 3d 2f lg]  contraction based 
on the average of F and F- has an SDCI level EA that agrees with the uncontracted 
(13s 9p 6d 4f 29) basis set result to within 0.01 eV [49]. This can be compared 
with a 0.1 eV error for the same size basis set that is contracted for F alone, but 
with the outermost (the most diffuse) s and p primitive functions uncontracted. 



Table V. ' A I  - 3B1 splitting in CH;! (kcal/mole) 

SOCI: six electrons correlated 

Basis Separation 
3s 2p ld/2s lp] 
4s 3p 2d 1 f 13s 2p 14 I 5s 4p 3d 2f 1914s 3p 24 
Expt (To) 
Expt+Theory" (T,) 

11.33 
9.66 
9.13 

9.02 9.28 (kO.O1l (k0.l  

a Ref. 53. 

The results are better if the contraction is based on F- alone, but they are still not 
as good as those obtained by using the average ANOs. A N 0  basis sets averaged 
for different states should thus supply a more uniform description in cases in which 
there is charge transfer or ionic/covalent mixing. It should be noted, however., that 
it may still be necessary to uncontract the most diffuse primitive functions and/or 
add extra diffuse functions to describe properties such as the dipole moments and 
polarizabilities [15,50] that are sensitive to the outer regions of the charge density. 

V. CALIBRATION CALCULATIONS 
The FCI benchmarks calculations discussed in Section 111 show that a 

CASSCF/MRCI treatment is capable of accurately reproducing the FCI results, 
at least when six electrons or fewer are correlated. Further, the A N 0  basis sets 
discussed in Section IV show that it is now possible to contract nearly complete 
primitive sets to manageable size with only a small loss in accuracy. Therefore, a 
six electron CASSCF/MRCI treatment performed in a large A N 0  basis set is ex- 
pected to reproduce accurately the FCI result in a complete one-particle basis set, 
and hence should accurately reproduce experiment. By including the +Q correc- 
tion, we believe chemical accuracy should be achievable for eight electron systems. 
In this section we illustrate several calculations that have achieved unprecedented 
accuracy by combining FCI benchmarks and A N 0  basis sets. 

As discussed above, FCI calculations for CH:! show that the SOCI treat- 
ment accurately accounts for the differential correlation contribution to the CH2 
'A1 - 3B1 separation. In Table V, this level of treatment is performed using in- 
creasingly accurate A N 0  basis sets [51]. It is interesting to note that although 
the [4s 3p 2d 1 f /3s 2p Id] basis contains fewer contracted functions than the large 
segmented basis sets previously applied to this problem [52], it produces a superior 
result for the separation. The largest A N 0  basis set used gives a separation in good 
agreement with, but smaller than, the T, value deduced from a combination of the- 
ory and experiment 1531. From the convergence of the result with expansion of the 
A N 0  basis set, it is estimated that the valence limit is about 9.05f0.1 kcal/mole. 
The remaining discrepancy with experiment is probably due to core-valence corre- 
lation effects. While FCI calculations have shown that a high level of correlation 



Table VI. N2 'E: spectroscopic constants 

[5s 4p 3d 2f lg] basis 
Method re (A) we (cm-l) De (eV) 

1.096 
1.096 
1.101 
1.102 

2382 10.015 
2382 10.042 
2343 9.723 
2336 9.745 

Expta 1.098 2359 9.905 

a Ref. 58. 

treatment is required for an accurate estimate of the CV contribution to the sepa- 
ration, somewhat simpler theoretical calculations [9] place an upper bound on this 
quantity of a 0.35 kcal/mole increase in the separation. Therefore, it is clearly 
possible to achieve an accuracy of better than one kcal/mole in the singlet-triplet 
separation in methylene. 

An analogous study [51] for SiH2 indicates that the singlet-triplet splitting 
can also be accurately computed for this second-row molecule. However, it now 
becomes necessary to include the dominant relativistic contributions, namely the 
mass-velocity and Darwin terms [54], via first-order perturbation theory [55] or 
by using an effective core potential, if chemical accuracy is to be achieved. Once 
relativistic effects have been accounted for, an accuracy of about 0.2 kcal/mole is 
obtained. This incidentally establishes the ionization potential of the 'A1 state of 
SiH2 as 9.15 eV, the higher of two recent experimental values [56]. The ability 
to treat second-row systems accurately can have some advantages when comparing 
with experiment: for example, molecules containing C1 can be isotopically substi- 
tuted, while the corresponding F species cannot. This will often mean that more 
information is available for comparison for some second-row systems. 

The FCI study of the XICT state of N2 showed that the SOCI treatment cor- 
relating the six 2p electrons, SOC1(6), accounts for essentially all of the correlation 
effects on the spectroscopic constants. However, this treatment [57] in a large A N 0  
basis set produces a De value that is larger than experiment [58] (see Table VI). 
Since this basis set has virtually no CI superposition error, this conclusively shows 
that 2s correlation reduces the De value. The inclusion of 2s correlation, i.e. corre- 
lating ten electrons, results in a De that is 0.16 eV smaller than experiment. The 
decrease in De when the 2s electrons are correlated can be explained in terms of 
an important atomic correlation effect that has no analog in the molecular sys- 
tem, namely the 2s + 3d excitation with a recoupling of the 2p electrons. At the 
MRCI(10) level (this is based on the CASSCF reference space from the six-electron 
calculation) the error in De is about 4 kcal/mole, or larger than the 1 kcal/mole 
desired for chemical accuracy. We may thus expect that computations on reactions 
involving multiply-bonded systems will have relative errors of several kcal/mole, in 
spite of the recent improvements in methodology. On the other hand, it is still 
important to apply the most accurate techniques to such problems, since certain 



Table VII. FCI calibration of the classical barrier height of F+HZ +HF+H". 

A. At the FCI saddle point 

FCI 
barrier 

4.50 
5.18 
4.43 
5.00 
4.32 
4.73 
4.51 
4.71 
4.54 
4.55 
4.32 

exothermicity 
28.84 
28.57 
29.12 
29.12 
29.21 
29.17 
28.80 
29.19 
28.84 
29.41 
29.31 

B. At the optimized saddle-point geometry* 

r( F-H) r(H-H) barrier exothermicity 
FCI 2.761 1.467 4.50 28.84 
CPF 2.801 1.467 4.40 26.47 
MRCI 300 2.740 1.476 5.16 28.57 
MRCI 300 +Q 2.795 1.467 4.42 29.12 
MRCI1322/[0.025j 

2.755 2.761 1.474 1.475 
4.70 4.49 29.17 

28.80 MRCI 322 0.025 +Q 

a Energies in kcal/mole and bond lengths in ao. All calculations are done using the 
[4s3pld/2slp] basis set and correlating seven electrons. The barrier is referenced to 
F.. .H:!(50ao), and the exothermicity is computed using HF. .  .H(50ao). 

Geometry optimizations were done using a biquadratic fit to a grid of nine points. 

aspects, such as understanding the effect of 2s correlation in reducing the De of the 
X I C l  state of NZ, are a by-product of accurate, calibrated calculations. We hope 
that similar insights will occur in the study of dynamics that are based on a PES 
using these recent advances in electronic structure theory. 

VI. THE F+H2 +HF+H REACTION 
In the previous section we showed that CASSCF/MRCI treatments of electron 

correlation in large AN0 basis sets give spectroscopic constants that are in excellent 
agreement with experiment. We now discuss the application of these methods to 
computing the barrier height and exothermicity of the F+H2 +HF+H reaction. 

In Table VII, several different MRCI treatments are compared to the FCI 
barrier height and exothermicity [13,59]; in all of these treatments only the seven F 
2p and H Is valence electrons are correlated. The smallest MRCI treatment has the 
F 2pa and H Is orbitals active in the CASSCF and MRCI (denoted MRCI(3OO), 



since there are three active orbitals of a1 symmetry). This calculation yields a 
barrier height that is 0.68 kcal/mole higher than the FCI. The inclusion of the +Q 
correction improves the barrier height, but it is now slightly too small. The sign of 
the error in the exothermicity also changes with the addition of the +Q correction. 
Such problems with the MRCI(300) treatment are not unexpected since the HF 
wave function is known to contain significant H+F- character. For accurate results 
it is therefore necessary to improve the description of the electron affinity (EA) of F 
by expanding the active space to (322) to include 2p + 2p' correlation. With such 
an active space a very large number of CSFs would arise in a CASSCF reference 
MRCI (or an SOCI) wave function, so it becomes necessary to select reference CSFs 
according to their CASSCF coefficients as described in Section 11: this expanded 
active space yields MRCI(322)+Q results that are in excellent agreement with the 
FCI, provided that the threshold for including CASSCF CSFs as references is no 
larger than 0.025. As noted above, further expansion of the active space improves 
the results, but the +Q correction may now overshoot the FCI value. 

The MRCI(300)fQ and MRCI(322)(0.025)+Q saddle-point geometries are 
both in excellent agreement with the FCI value. It is interesting to note that 
although the CPF method is quite accurate for the barrier height and saddle-point 
geometry, it is significantly poorer for the exothermicity. 

In order to compute an accurate barrier height, the basis set is expanded from 
the [4s 3p ld/2s lp] set used for the FCI calibration to a [5s 5p 3d 2f lg/4s 3p 24 
AN0 set. In this large basis set, the spectroscopic constants for H2 are in almost 
perfect agreement with experiment. The MRCI(222)+Q treatment of HF, which is 
analogous to the MRCI 322) treatment of F+H2, yields an excellent re ,  but a De 
which is 1.22 kcal/mole r 0.05 eV) too small. The CI superposition error for F in the 
H2 ghost basis set is 0.15 kcal/mole; this is even smaller than that obtained using 
the large Slater-type basis set from Ref. 60. An accuracy of better than 1 kcal/mole 
for the barrier height can therefore be expected. 

The theoretical results for the classical saddle-point and barrier height are 
summarized in Table VIII. Based on the FCI calibration, the MRCI(322)(2p)+Q 
calculations, in which seven electrons (i.e. excluding F 2s) are correlated, are ex- 
pected to reproduce the result of an FCI calculation in a nearly corn lete one-particle 
.basis set. Since F 2s correlation decreases the barrier, this MRC1522)(2p)+Q bar- 
rier, when corrected for the CI superposition error (SE), represents an absolute 
upper bound of 2.52 kcal/mole for the barrier. 

The inclusion of F 2s correlation decreases the barrier height, and increases 
the magnitude of the +Q correction. Unfortunately, it is not possible to calibrate 
this level of treatment using the FCI approach. However, the nine electron +Q 
correction must be at least as large as the seven electron +Q correction, which is 
calibrated against the FCI. Therefore, a conservative upper bound of 2.26 kcal/mole 
is obtained using the MRCI(322)(2p)+Q treatment (corrected for SE). However, 
experience for nine electron systems, especially in calculations of electron affinities, 
has shown that the +Q correction for nine electrons is probably somewhat too 
small, making the actual MRCI(322)+Q value of 1.86 kcal/mole (corrected for SE) 
a more realistic estimate. Finally, the best estimate should also include an estimate 
of basis set incompleteness and account for the underestimation of the effects of 
higher excitations by the +Q correction. To accomplish this, we first omit the SE 
correction, assuming instead that the basis set incompleteness is 0.1 kcal/mole, and 
we further assume that the true +Q correction is 120% of that computed; this yields 
our best empirical estimate of 1.35 kcal/mole for the classical barrier height. Thus 



Table VIII. Theoretical studies of the classical saddle-point geometry and barrier 
for the F+H2 reaction. 

Level MRC1[322/(2p]' of treatment 

MRCI 322 2p +Qc 
MRCI 322 
MRCI 322 +Q 
CCI(322) 

CCI(322) 
CCI(322)+Q 

Expt. 

saddle-point 
2.899 1.455 
2.910 1.456 
2.914 1.451 
2.950 1.450 

d d 

d d 

d d 

d d 

... ... 

... ... 

... ... 

2.879 1.44i 
2.909 1.445 

barrierb exothermicityb 
2.99 33.96 
2.42 33.42 
2.63 31.61 
1.66 30.47 
2.79 31.8 
2.02 30.7 
2.73 
1.95 
2.89 
2.14 

31.73 

a This letter "A" denotes the [5~5p3d2flg/4~3p2d] basis described in the text. ' The barrier is referenced to F.. .H2(50ao), and the exothermicity is computed 
using HF.. .H(50ao). 

These are seven-electron treatments (i.e. 2s correlation is excluded). 
The MRCI(SOO)+Q saddle point geometry is used, r(F-H)=2.921 a0 and r(H- 

H)=1.450 an. 
e Denotes that a function of this angular momentum type has been added. 

based solely on estimates from ab initio calculation the barrier height should be 
between 1.35 and 1.86 kcal/mole. 

While the MRCI(322)+Q calculations in the A N 0  basis set are more reliable 
than any previous results, considerable computer time would be required to compute 
a global surface at this level. The barrier height was therefore investigated using 
the contracted CI (CCI) approach. In the same A N 0  basis set, the CCI+Q barrier 
is 0.4 kcal/mole higher than the corresponding MRCI+& value. Further extension 
of the basis set was also investigated at the CCI level: f polarization functions 
on H were found to lower the barrier by only 0.07 kcal/mole, while eliminating 
the g function on F increased the barrier by 0.12 kcal/mole. These observations 
are consistent with the contention that the basis set is nearly complete. The CCI 
calculation in this basis set is sufficiently inexpensive that much larger regions of 
the PES can be investigated. Of course, given the differences between the MRCI 
and CCI barrier heights some account would have to be taken of the errors in CCI 
treatment; this might involve adjusting the parameters in the fitted potential based 
on the MRCI(322)+Q calculation or on information deduced from experiment. 

While the MRCI(322)+Q-corrected CCI+Q PES should be accurate, direct 
comparison with experiment is difficult. To facilitate comparison we have employed 
canonical variational transition state theory [61] at the classical and adiabatic bar- 
rier using the CCI+Q potential for both F+H2 and F+D2. These calculations 
account for the zero-point energy and include a tunneling correction. The results 
of these calculations are summarized in Table IX. As expected, the zero-point and 
tunneling corrections are different for H2 and D2. At the classical saddle-point, 



Table IX. Zero-point and tunneling effects on the barrier height of the F + H2 and 
F + D2 reactions. 

F + H2 surface 

T H F ,  a0 
r H H ,  a0 
Barrier, kcal/mole 
Sym. stretch, cm-' 
Bend, cm-' 
Asym. stretcha, cm-' 
Zero-point correctionb, kcal/mole 
E barrier + zero point, kcal/mole 
Tunneling correction, kcal/mole 
Threshold, kcal/mole 

F + D2 surface 

T H F ,  a0 
T H H ,  a0 
Barrier, kcal/mole 
Sym. stretch, cm-' 
Bend, cm-' 
Asym. stretcha, cm-' 
Zero-point correctionb, kcal/mole 
E barrier + zero point, kcal/mole 
Tunneling correct ion, kcal/ mole 
Threshold, kcal/mole 

Classical Barrier 
CCI 

2.879 
1.447 
2.888 
3706 
68.5 
6922' 

2.286 

1.75 

-0.602 

-0.54 

CCI + Q 
2.909 
1.445 
2.143 
3768 
45.9 
605i 

-0.643 
1.500 

-0.47 
1.03 

Classical Barrier 
CCI 

2.879 
1.447 
2.888 
2623 
37.7 
512i 

-0.488 
2.400 
-0.40 

2.00 

CCI + Q 
2.909 
1.445 
2.143 
2667 
19.1 
4482' 

-0.532 
1.611 
-0.35 

1.26 

Adiabatic Barrier 
CCI 

3.070 
1.425 
2.639 
4074 
68.5 
530i 

2.563 

2.14 

-0.076 

-0.42 

CCI + Q 
3.155 
1.421 
1.860 
4178 
45.9 
371i 

-0.057 
1.803 
-0.29 

1.51 

Adiabatic Barrier 
CCI 

3.010 
1.430 
2.761 
2811 
37.7 
42% 

-0.220 
2.541 
-0.34 

2.20 

CCI + Q 
3.075 
1.427 
1.997 
2876 
19.1 
3342' 

-0.233 
1.764 
-0.26 

1.50 

~ ~~ ~~ ~ ~~~~~ 

aFrom the normal mode analysis at the classical barrier, and computed from the 
curvature along the Eckart potential at the adiabatic barrier. 
bFor Hz(D2) we used w,=4401(3116) cm-', respectively, from Ref. 58. 

the barrier heights for H2 and D2 differ by 0.2 kcal/mole, whereas at the adiabatic 
saddle point the barriers are the same. The observation [62] of nearly identical 
thresholds for H2 and D2 also provides strong support for using the adiabatic bar- 
rier. In order to bring the computed threshold into agreement with experiment [62], 
we must lower the CCI+Q classical barrier by 0.7-0.8 kcal/mole. This produces a 
barrier height of 1.3-1.4 kcal/mole, or after accounting for the errors associated 
with these approximations, a barrier height of 1.0-1.5 kcal/mole. This is in good 



agreement with the estimate made directly from the MRCI calculations, and also 
with that deduced in recent calculations by Truhlar and co-workers [63], although it 
disagrees with the value inferred by Schaefer [64] from most previous calculations. 

VII. DISCUSSION AND CONCLUSIONS 
We have shown that recent developments in electronic structure calculations 

have given new insight into the solution of the n-particle problem and A N 0  basis 
sets have reduced the error in the one-particle basis sets. This leads to more accurate 
calculations then previously possible. For systems with only one heavy atom, results 
with an error of less than one kcal/mole are now possible. For systems with multiple 
bonds, the error is still a few kcal/mole. 

While current calculations are capable of high accuracy, they are still com- 
putationally intensive. Therefore, it is usually not possible to fully characterize a 
global PES by computing a closely-spaced grid of points, and the maximum in- 
formation must be extracted from the available points by a fitting procedure. At 
present, most dynamical methods use only a fit to the total energies; such fits to a 
global surface can be very difficult even when sufficient precision exists in the com- 
puted energies. One suggestion for improving the fitting procedure (without a large 
increase in the number.of computed points) is to compute the energy derivatives, as 
well as the total energy, at each point on the surface. Given that analytic derivative 
techniques have proven far more cost-effective than the use of finite differences for 
locating stationary points [65], it seems likely that this could represent a major 
improvement in the definition of the required surfaces [66]. 

As illustrated by the F+H2 reaction, even the best calculations may require 
some scaling to reproduce experimental barrier heights, exothermicities, or reaction 
rates. The global surfaces obtained at a lower level of theory can also be adjusted by 
comparing with more accurate calibration calculations carried out at critical points 
on the surface. For example, the CCI+Q potential for the F+H2 reaction could be 
modified by comparison with more accurate MRCI calculations. 

The SEC method [34] has been proposed as a way to correct for both errors in 
the n- and one-particle basis sets. However, its application requires a one-particle 
basis set with approximately the same error for the reactant and product channel. 
This is not easy to arrange when the basis sets are defined by a single prescription, 
as is the case for A N 0  basis sets (as seen above for F+H2), and is only applicable 
when the heats of reaction for reactants and products are known. The SEC method 
may be useful in estimating residual errors in less accurate calculations, especially 
in combination with the +Q correction so that the estimated contributions of n- 
particle and one-particle space incompleteness can be analyzed [67]. When A N 0  
basis sets are used it seems preferable to use successively larger contracted sets 
and to obtain an estimate of the basis set limit from these results, as in the CH2 
calculations described above. 

The recent improvements in electronic structure calculations now make it 
feasible to develop of a complete PES containing one heavy atom competitive with 
those deduced from experimental results. Accuracies of 1 kcal/mole are often achiev- 
able for the critical points on the surface. The availability of more accurate PES 
should also facilitate the evaluation of dynamical methods through comparison with 
experiment. 
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